ブックメーカー野球

<ウェブサイト名>

<現在の時刻>

出典: 標準

International Affairs Students Current Students Alumni Faculty/Staff Careers--> TOHOKU UNIVERSITYCREATING GLOBAL EXCELLENCE Search 日本語 Contact Tohoku University --> About Facts & Figures Facilities Organization Chart History President's Message Top Global University Project Designated National University Global Network Promotional Videos Academics Undergraduate Graduate Courses in English Exchange Programs Summer Programs Double Degree Programs Academic Calendar Syllabus Admissions Undergraduate Admissions Graduate Admissions Fees and Expenses Financial Aid Research Feature Highlights Research Releases University Research News Research Institutes Visitor Research Center Research Profiles Academic Research Staff Campus Life International Support Office IT Services Facilities Dining & Shops Campus Bus Clubs & Circles News University News Research--> Arts & Culture Health & Sports Campus & Community Press Release--> International Visit Alumni Careers Events Exhibits Music Special Event Lecture Alumni--> Map & Directions Campus Maps & Bus--> Facilities Map--> TOHOKUUNIVERSITY About Academics Admissions Research Campus Life News Events International Affairs Students Current Students Alumni Faculty/Staff Promotional Videos Subscribe to our Newsletter Map & Directions Contact Jobs & Vacancies Emergency Information Site Map 日本語 Close Home Research News Coordinating protein and lipid metabolism Research News Coordinating protein and lipid metabolism 2015-12-11 A neuronal relay system offers a new therapeutic strategy for obesity-related hypertriglyceridemia Researchers at Tohoku University have discovered a communication pathway between the brain, fat and the liver that plays a critical role in obese people developing hypertriglyceridemia, a condition characterized by increased blood levels of fatty substances known as triglycerides. These findings could be important for the development of new therapies that reduce or prevent the risk of patients with hypertriglyceridemia developing atherosclerosis and cardiovascular disease. Previous studies have shown that excess dietary protein that enters the liver as amino acids can cause hypertriglyceridemia, but little is known about the mechanism involved. Hideki Katagiri at Tohoku University Graduate School of Medicine and colleagues have identified a messenger system that regulates these amino acid and triglyceride levels. They found that neuronal signals convey nutritional information in the liver to adipose tissue, which decreases expression of adipose lipoprotein lipase, the protein responsible for breaking down triglycerides and enabling the uptake of fat into tissues 1. This is not the first time the authors have examined the role of neuronal signals in mediating communication between the liver and other parts of the body. In 2008, they showed how neuronal signals from the liver induce beta cell proliferation in the pancreas 2 . But their most recent results took them by surprise. "Although we expected that neuronal signals would mediate some interesting phenomena in other tissues, hypertriglyceridemia was totally unexpected," says Katagiri. To mimic the conditions found in some patients with obesity, the authors generated a transgenic mouse model with high levels of amino acids in the liver. As previously reported in patients with obesity, the intracellular mechanistic target of rapamycin complex 1 (mTORC1) and S6kinase (S6K) signaling pathway was activated in the liver of these mice and high levels of blood triglycerides were observed, especially after feeding. When the researchers removed the nerve connections that link the liver to the brain, known as the afferent vagus, or blocked the sympathetic nerves that innervate adipose tissue, hypertriglyceridemia did not develop. Through further genetic and pharmacological analyses, the authors showed that upon activation of mTORC1-S6K signaling in the liver and a high fat intake, the neuronal relay system causes a decrease in expression of lipoprotein lipase in adipose tissue and thus, a decrease in the breakdown of triglycerides. "Neuronal relay systems are important for the development of many key features of the metabolic syndrome," says Katagiri. Understanding the mechanisms mediating inter-tissue communication to coordinate nutrient metabolism will lead to much needed therapies for common conditions such as hyperinsulinemia, hypertension and obesity. Researchers at Tohoku University discover a neuronal messenger system that plays a critical role in obese people developing a metabolic syndrome characterized by hypertriglyceridemia. Nutritional information about excess dietary proteins entering the liver as amino acids is transmitted to the brain. The brain then relays that information to fat tissue, which suppresses expression of a protein responsible for breaking down triglycerides, known as adipose lipoprotein lipase (LPL). References: 1. Uno, K. et al. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nature Communications 6, 7940 (2015). http://dx.doi.org/10.1038/ncomms8940 2. Imai, J. et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322, 1250-1254 (2008). http://dx.doi.org/10.1126/science.1163971 Contact: Hideki Katagiri Tohoku University Graduate School of Medicine Email: katagirimed.tohoku.ac.jp Archives 2014&#24180; 2015&#24180; 2016&#24180; 2017&#24180; 2018&#24180; 2019&#24180; 2020&#24180; 2021&#24180; 2022&#24180; 2023&#24180; Page Top About Tohoku University Academics Admissions Research Campus Life News Events International Affairs Students Alumni Promotional Videos Subscribe to our Newsletter Map & Directions Contact Tohoku University Jobs & Vacancies Emergency Information Site Map Media Enquiries Parent & Family Support Public Facilities Contact Tohoku University

ホットニュース

スマホでカジノ オンラインカジノを無料で遊ぶ方法|オンカジデモモード バカラプロ フラムfc対ニューカッスルスタメン
Copyright ©ブックメーカー野球 The Paper All rights reserved.